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POWER-LAW BODIES OF MAXIMUM LIFT-TO-DRAG RATIO - 

IN HYPERSONIC FLOW(+) 

~~ 

AAR- 20 
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ANGEL0 MIELE'*) and HO-YI HUANG (***I 

SUMMARY 

The problem of maximizing the lift-to-drag ratio of a slender, flat-top, hypersonic 

body is investigated under the assumptions that the pressure distribution is Newtonian 

and the skin-friction coefficient is constant. Direct methods are employed, and the ~ 

-- 

analysis is confined t o  the class of bodies whose transversal contour is semicircular 

and whose longitudinal contour is a power law. 
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First, unconstrained configurations are considered, and the combination of power 

law exponent and thickness ratio maximizing the lift-to-drag ratio is determined. For  

- 3  a friction coefficient C = 10 , the maximum lift-to-drag ratio is E = 3 . 6  and corresponds 
f 

to a conical configuration of thickness ratio T = 0.118. 

Next, constrained configurations are considered, that is, conditions are imposed 

on the length, the thickness, the volume, and the position of the center of pressure.  

For each combination of constraints, an appropriate similarity parameter is introduced, 

and the optimum power law exponent, thickness ratio, and lift-to-drag ratio are deter- 

mined as functions of the similarity parameter. 

" ~ 0 ~  
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1. INTRODUCTION 

In Ref. 1, the basic theory of slender, flat-top, homothetic bodies in the hypersonic 

regime was formulated under the assumptions that the pressure  distribution is Newtonian 

and the skin-friction coefficient is constant. Analytical expressions were derived 

relating the drag, the lift, and the lift-to-drag ratio to  the geometry of the configuration, 

that is, the longitudinal and transversal contours of the homothetic body. In Ref. 2, two 

complementary variational problems were  formulated, that of optimizing the longitudinal 

contour for a given transversal contour and that of optimizing the transversal contour 

for a given longitudinal contour, the criterion of optimization being the lift-to-drag ratio. 

The existence of s imilar  solutions was investigated, and it was concluded that (1) the 

optimum longitudinal contour of a body of arbitrary transversal  contour can be determined 

from the known optimum longitudinal contour of a body of semicircular cross  section and 

(2) the optimum transversal  contour of a body of arbitrary longitudinal contour can be 

determined from the known optimum transversal contour of a conical body. 

The next step is to determine the extrema1 properties of these reference bodies. 

Here, a body of semicircular cross section is considered, and its longitudinal contour is 
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I The hypotheses employed are as  follows: (a) a plane of symmetry exists between 

determined for given constraints imposed on the length, the thickness, the volumeI and 

i free-stream velocity is perpendicular to  the base plane and, therefore, is parallel to  the 

the position of the center of pressure.  Direct methods are employed, and the analysis 

~ 

coefficient is twice the cosine squared of the angle formed by the free-stream velocity 

is confined to  the class of power law contours. In a subsequent report (Ref. 3), this 

, and the normal to each surface element; (f) the skin-friction coefficient is constant; (g) the 

limitation is removed, and the longitudinal contour is determined with the indirect methods 

i contribution of the tangential forces to the lift is negligible with respect to the contribution 

of the calculus of variations. 

1 of the normal forces; (h) the body is slender in the longitudinal sense; (i) the transversal 

the left-hand and right-hand sides of the body; (b) the upper surface is flat; (c) the base 

plane is perpendicular to both the plane of symmetry and the plane of the flat top; (d) the 

line of intersection of the plane of symmetry and the plane of the flat top; (e) the pressure 

contour is semicircular; and (j) the longitudinal contour is represented by a power law. 

. 
t l  
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2. FUNDAMENTAL EQUATIONS 

In order to  relate the drag, the lift, and the pitching moment of a body to its 

geometry, we define two coordinate systems (Fig. 1): a Cartesian coordinate system 

Oxyz and a cylindrical coordinate system Oxr8. For the Cartesian coordinate system, 

the origin 0 is the apex of the body; the x-axis is the intersection of the plane of symmetry 

and the flat top, positive toward the base; the z-axis is contained in the plane of symmetry, 

perpendicular t o  the x-axis, and positive downward; and the y-axis is such that the 

xyz-system is right-handed. For the cylindrical coordinate system, r is the distance 

of any point from the x-axis, and 8 measures the angular position of this point with respect 

to the xy-plane. 

If the hypotheses (a) through (h) are invoked and if the lower surface is represented 

by the relationship 

r = r(x, 0) 

the drag D, the lift L, and the pitching moment M per  Unit free-stream dynamic pressure 

q can  be written as (Refs. 1 and 2) 
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+ r i )  + 2C f ]&de+ 2Cf (r(x,O)dx 

L / q = %  . e r r / 2  & r4r 2 2  r /(r 2 + r ~ ) ] ( r s i n B - r g c o s O ) d x d O  
- x  

)] ( r  sin 0 - re cos 0) &de 

where .e is the length of the body and where the subscripts x and 8 denote partial 

derivatives. Next, we  invoke hypothesis (i) and observe that, if every c ross  section is 

semicircular, the function (1) degenerates into 

r = r(x) 

with the implication that 

r = O  e 

everywhere. Hence, the surface integrals (2) reduce to the line integrals 

.2 L/q = J  4 r r  & 
0 
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in which ? denotes the total derivative dr/dx. In accordance with hypothesis (j), we 

specialize the longitudinal contour (3) to the power law 

r/t = ( x / t l n  

in  which n is an undetermined exponent and t is the base thickness. Consequently, 

Eqs. (5) become 

I 

where 

2 3  D/q = 4 T (7 fl + Cffi) 

2 3  L/q = 4 7 f3 

7 = t / t  

is the thickness ratio and where 

3 
fl(n) = m  /(2n - 1) 

f2(n) = (2 + n)/(n + 1) 

2 f3(n) = 4n /(3n - 1) 

f4(n) = 4n/3 
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These equations a r e  valid for n > 1/2 only, owing to  the fact that the pressure drag 

cannot be negative. 

Once the drag, the lift, and the pitching moment are known, certain derived 

quantities can be calculated. They are the lift-to-drag ratio E and the nondimensional 

distance 5 of the center of pressure from the apex. These quantities are defined by 
0 

E = L/D , To = xo/G= M/LG 

and, because of Eqs. (7), can be rewritten as 

Clearly, the lift-to-drag ratio depends on both the thickness ratio and the power law 

exponent, while the position of the center of pressure depends on the power law exponent 

only. 

and, because of Eqs. (7), can be rewritten as 

= f  /f 
2 3 

E = 7 f3/(7 f l  + C f f 2 )  9 so 3 

Clearly, the lift-to-drag ratio depends on both the thickness ratio and the power law 

exponent, while the position of the center of pressure depends on the power law exponent 

only. 

and reduces to 

Finally, the volume of a flat-top, symmetric body is given by 

and reduces to 



9 AAR- 20 

if the transversal contour is semicircular. In addition, if the longitudinal contour is 

represented by a power law, Eq. (13) simplifies to 

3 2  
5 v=.e T f 

where 

f5(n) = n/2 (2n + 1) 
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3 .  UNCONSTRAINED CONFIGURATION 

The first  step in the analysis is to  determine the maximum lift-to-drag ratio 

of a configuration which is unconstrained geometrically and aerodynamically. According 

to  Eq. (11-1), the lift-to-drag ratio depends on both the thickness ratio and the power 

law exponent, that is, it has the form E = E(7,n). Therefore, the optimum values of 7 

and n a r e  determined by the simultaneous relationships 

3 E = O  (16) n 
E = O  

7 

in  whch  the subscripts denote partial derivatives. These relationships can be written 

explicitly as 

3 
7 f l  - 2Cff2 = 0 

f ( T f  3 + C f ) - f 3 ( 7 f 1 + C I ) = 0  3 .  
3 1 f 2  f 2  

with the dot sign denoting a total derivative with respect to n .  From Eq. (17- l), it appears 

that the optimum thickness ratio is such that the skin-friction d rag  is one-third of the 

total drag. Furthermore, upon eliminating the thickness ratio from Eqs. (17), we obtain 



the relationship 

11 

2g1 +g2 - 3g = 0 3 

where 

g1 =f l / f l  3 g2 = f2/f2 2 g3 = f 3 3  /f 

~ ~~ 
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On account of the definitions (9-1) through (9-3), we see that Eq. (18) is solved by 

n = l  

which means that the optimum longitudinal contour is conical. With this understanding, 

the thickness ratio (17- 1) and the lift-to-drag ratio (11-1) become 

-'I3 = (2/n + 1)1/3 Z1.178 Tcf 

Equation (21-2) represents the upper limit to the lift-to-drag ratio which can be obtained 

with a flat-top configuration of semicircular cross section subjected to a flow parallel 

t o  the flat top. Should the configuration be required to  satisfy a certain number of 

geometric and/or aerodynamic constraints, a loss in the lift-to-drag ratio would occur 

with respect to that predicted by Eq . (21-2). 
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4. GIVEN CENTER OF PRESSURE 

To prescribe the nondimensional distance of the center of pressure from the apex 

is equivalent to prescribing the power law exponent in accordance with Eq. (11-2). 

Therefore, the lift-to-drag ratio can be maximized with respect to the thickness ratio 

only, and the relevant optimum condition is represented by Eq. (16- 1)  implicitly o r  

Eq. (17-1) explicitly. Because of Eq. (17-1), the optimum thickness ratio is given by 

- 1/3 1 /3 Tcf = (2f2/fl) 

and the associated lift-to-drag ratio is 

ECf 

The parametric equations (11-2), (22), and (23) admit solutions of the form 

n = PK0) 3 TCf -lj3= Q(T0) , EC,'/3= R(FO) (24) 

which a r e  plotted in Figs. 2 through 4 .  For Eo = 2/3, the body is conical, and the maximum 

l a - t o - d r a g  ratio reaches the upper limit represented by Eq. (21-2). For any other value 

of To, lower values of the lift-to-drag ratio are obtained as shown in Fig. 4. 
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5. GIVEN THICKNESS AND LENGTH 
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To prescribe the thickness and the leng h is ecpivdlent t o  prescr bing the thickness 

ratio T in accordance with the definition (8). Therefore, the lift-to-drag ratio (11- 1) 

can be maximized with respect to the power law exponent only, and the relevant optimum 

condition is represented by Eq. (16-2) implicitly or Eq. (17-2) explicitly. Because of 

Eq. (17-2), the optimum power law exponent satisfies the relationship 

fl 1/3 
= (  - 1/3 

Tcf \g2 - g3 

whose solutions are such that n > 0.789. The associated lift-to-drag ratio is given by 

- 1/3 
1/3 / fl  

= \-: 
ECf 82 g3 

The parametric equations (25) and (26) admit solutions of the form 

- 1/3) , ECf/3 = R(7Cf W 3 )  
f n = P(TC 

which are plotted in Figs. 5 and 6 .  When the thickness-length parameter has the value 

1.178, the configuration is conical, and the associated lift-to-drag ratio is EC 1/3= 0.3601. f 

Fo r  larger values of the thickness-length parameter, the configuration is convex, and 

for smaller values, it is concave. 
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6. GIVEN VOLUME AND LENGTH 

If the volume and the length are given, it is convenient t o  rewrite Eq. (14) in 

the form 

2 v/t3 = 7 f5 

The lift-to-drag ratio (11-1) is to  be maximized with respect to the combinations of 7 

and n which ensure the constancy of the right-hand side of Eq. (28). In accordance with 

Lagrange multiplier theory, we introduce an undetermined constant X and define the 

fundament a1 function 

2 
5 

F = E + X 7  f 

Then, the optimum conditions are 

F z 0  , F = O  
7 n 

which are equivalent to 

29 E f 2 h 7 f  = O  , E + X 7 f 5 = 0  
7 5 n 
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and, upon elimination of the Lagrange multiplier, imply that 

where 

= i  /f 
gs 5 5 

In the light of Eq. (11-1), Eq. (32) can be rewritten as 

(33) 

and its solutions are such that n > 0.735. The associated lift-to-drag ratio and volume- 

length parameter are given by 

- 2/3 2/3 
f l  = (  82 - g3 + g 5  

-3 -2/3 v.e Cf 
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The parametric equations (34) and (35) admit solutions of the form 
t 
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) 
- 3  -2/3 

) , EC,'/3 = R(VG Cf, 
-3 -2/3 - 1/3 - 3  -2/3 

n = P ( V t  Cf ) ¶ 7Cf =Q(V& Cf 

which are plotted in  Figs. 7 through 9. When the volume-length parameter  has the value 

- 1/3 = 1.178 and a f 0.7272, the configuration is conical, with a thickness ratio T C 

lift-to-drag ratio EC 1/3 = 0.3601.  For larger values of the volume-length parameter, f 

the configuration is convex, and for smaller values, it is concave. 



AAR- 20 17 

7. GIVEN VOLUME AND THICKNESS 

I€ the volume and the thickness a re  given, it is convenient to rewrite Eq. (14) 

in the form 

The lift-to-drag ratio (11-1) is to be maximized with respect to the combinations of T 

and n which ensure the constancy of the right-hand side of Eq. (37). In accordance 

with Lagrange multiplier theory, we introduce an undetermined constant A and define the 

fundamental function 

F = E t X f  /'T 5 

Then, the optimum conditions a re  

FT=O , F = O  n 

which are equivalent to 

2 
T E - X f  = O  , TE + A i  = O  

7 5  n 5  

and, upon elimination of the Lagrange multiplier, imply that 

+ E  = O  T E P ~  n 

(39) 
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In the light of Eq. (11-l), Eq. (41) can be rewritten as 

AAR- 20 

and its solutions a r e  such that 0.5 < n < 1.31. The associated lift-to-drag ratio and 

volume-thickness parameter are given by 

The parametric equations (42) and (43) admit solutions of the form 

-3 1/3 - 1/3 -3 1/3 -3 1/3 
= Q(Vt Cf ) , ECf1/3 = R(Vt Cf ) n =P(Vt C ) , 7Cf 

f (44 1 

which are plotted in Figs. 10 through 12. When the volume-thickness parameter has the 

-1/3 = 1.178 and a value 0.4443, the configuration is conical, with a thickness ratio T C 
f 

lift-to-drag ratio ECf 1/3 = 0.3601. For larger values of the volume-thickness parameter, 

the configuration is convex, and for smaller values, it is concave. 
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8. DISCUSSION AND CONCLUSIONS 

In the previous sections, the  problem of maximizing the lift-to-drag ratio of a 

slender, flat-top, hypersonic body is investigated under the assumptions that the pressure 

distribution is Newtonian and the skin-friction coefficient is constant. Direct methods 

are employed, and the analysis is confined t o  the class of bodies whose transversal 

contour is semicircular and whose longitudinal contour is a power law. 

First, unconstrained configurations are considered, and the combination of power 

law exponent and thickness ratio maximizing the lift-to-drag ratio is determined. For 

-3  
a friction coefficient C = 10 , the maximum lift-to-drag ratio is E = 3.6 and corresponds 

f 

t o  a conical configuration of thickness ratio T = 0.118. 

Next, constrained configurations are considered, that is, given conditions are 

imposed on the length, the thickness, the volume, and the position of the center of pressure. 

For  each combination of constraints , an appropriate similarity parameter is introduced, 

and the optimum power law exponent, thickness ratio, and lift-to-drag ratio are determined 

as functions of the similarity parameter. The lift-to-drag ratio of a constrained con- 

figuration is smaller than that of the optimum unconstrained configdration; however, for 
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a particular value of the similarity parameter, equality is achieved. 

While the longltudinal contour is conical for  an unconstrained configuration, it can 

be either convex o r  concave for  constrained configurations, depending on the value of the 

similarity parameter. Since the Newtonian pressure law has been verified experimentally 

for convex configurations only, the results pertaining to concave configurations are 

merely indicative of qualitative trends. 

Finally, it is of interest to compare the present lift-to-drag ratios with those 

characteristic of drag-optimized, flat- top configurations. The analysis is omitted for 

the sake of brevity, since it involves only a slight modification of that presented in Ref. 4. 

As expected, the lift-to-drag ratio of a minimum drag configuration is lower than that 

of a maximum lift-to-drag ratio configuration. The relative d s e r e n c e  depends on the 

similarity parameter and, in the range of values considered in Figs. 5 through 12, is 

less than 8% if the length and the thickness are given, 23% i f  the length and the volume 

are given, and 9% if the thickness and the volume are given. 

. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

LET OF CAPTIONS -- 

Coordinate system. 

Power law exponent. 

Optimum thickness ratio. 

Maximum lift- to- drag ratio. 

Optimum power law exponent. 

Maximum lift- to- drag ratio. 

Optimum power law exponent. 

Optimum thickness ratio. 

Maximum lift-to-drag ratio. 

Optimum power law exponent. 

Optimum thickness ratio. 

Maximum lift- to- drag ratio. 
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